
JOURNAL OF COMPUTATIONAL PHYSICS 95, l-28 (1991) 

Distribution of Event Times in Time- Resolved Fluorescence: 
The Exponential Series Approach-Algorithm, 

Regularization, Analysis* 

GERHARD LANDL 

Institut ftir Physikalische Chemie, Universitiit Wien. 
WiihringerstraJe 42, A-1090 Wien, Austria 

THOMAS LANGTHALER 

Institut fiir Physikalische Chemie, Universitat Wien, 
WiihringerstraJTe 42, A-1090 Wien, Austria and 

Institut fiir Mathematik, Johannes-Kepler-Unioersitiit, 
A-4040 Linz, Austria 

HEINZ W. ENGL+ 

Institut ftir Mathematik, Johannes-Kepler-Universitiit, 
A-4040 Liz, Austria 

AND 

HARALD F. KAUFFMANN’ 

Institut jiur Physikalische Chemie, Universitat Wien, 
Wiihringerstraje 42, A-1090 Wien, Austria 

Received June 26, 1989; revised February 8, 1990 

In time-resolved fluorescence spectroscopy, a distribution of fluorescence lifetimes resulting 
from static and dynamic disorder of a polychromophoric ensemble is to be determined from 
the molecular fluorescence response to the optical probe pulse. To do this, one has to solve 
a convolution integral equation of the first kind and then invert a Laplace transform. Both 
problems are ill-posed in the sense of Hadamard. We describe in detail an algorithm that com- 
bines coarse discretization for inverting the Laplace transform with a nonlinear least-squares 
approach based on Newton and quasi-Newton techniques for solving the convolution equa- 
tion. While this algorithm works well in many cases, it does not completely remove the 
instabilities due to the ill-posedness. Thus, we also propose an algorithm that combines the 
approach described above with Tikhonov regularization. Several examples, both with syn- 
thetic and with real data, show the performance of our algorithms. 0 1991 Academx Press, Inc 
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1. INTRODUCTION 

Over the last decade, time-resolved fluorescence spectroscopy has become a 
powerful kinetic tool for studying dynamical processes in molecular systems. 
Chromophores, electronically excited by optical pulses, have fluorescence life- 
times generally in the range of a few picoseconds to some tens of nanoseconds, so 
transient fluorescence measurements can cover a variety of rapid relaxation 
events in condensed phase. Typical physical processes that have been probed by 
fluorescence techniques are conformational transitions, orientational relaxation of 
fluorophores, energy transfer, polar solvation dynamics, and cis-trans isomerization 
along a torsion coordinate [ 193. In addition, transient fluorescence measurements 
provide direct access to migrational and rotational sampling in polymers [28, 541, 
to the modes of internal motion in biological materials [ 12,481, and to excitation 
energy transport in polychromophoric ensembles [2, 31. Various transient 
configurations can measure such short time-profiles and among these, the detection 
technique of single-photon timing (SPT) [40, 521 is now the most sensitive one and 
preferentially used. 

Despite the considerable advances in time resolution and data acquisition, the 
analysis of fluorescence data encounters several serious problems. One difficulty in 
evaluating transient patterns arises from a purely mathematical point of view: 
If f(t), t 2 0, characterizes the systems molecular fluorescence response to a 
Dirac S-function input at t = 0, then the impulse fluorescence response to any 
other optical input pulse, l(t) (called the “lamp-function” below), is the one-sided 
convolution of I with f; 

h(t)=[' I(z)f(t-z)dc (1.1) 
0 

The problem with this Volterra integral equation of the first kind is the following: 
The frequency-band limited nature of experimental optical pulses produces finite, 

temporal waveforms, so that the sharp characteristics of the system’s fluorescence 
impulse response, f(t), are smoothed out, partly beyond recognition. This 
smoothing property of the integral operator in (1.1) is responsible for the ill- 
posedness of the deconvolution problem (cf. Section 4). In order to reconstruct the 
fluorescence pattern, f(t), from smooth data, h(t), one has to solve an ill-posed 
deconvolution problem [9]. The serious numerical difficulty of treating (1.1) (like 
any other ill-posed problem) stems form the fact that the collected SPT data, h(t), 
are superimposed by noise, thus, in order to stabilize the inverse procedure in (1.1) 
and obtain useful boundaries for the error in terms of the Poissonian noise level, 
regularization has to be used (cf. Section 4). Compared to this “best-case” situation 
(synthetic data + artificial noise), experimental fluorescence data make the problem 
worse, as, in addition, time-to-amplitude converter nonlinearities, interfering radio 
frequencies, pulse-to-pulse instabilities, photomultiplier color effects, light- 
scattering, and so on will systematically contaminate the error levels of Poisson 
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counting statistics [40, 521. Although some of the artefacts can be drastically 
reduced today, e.g., by correction of the color effects in the instrument response 
function [8, 55, 561, the distortion caused by the experimental noise level is still 
high enough and impossible to argue away. Systematic trends and structures in real 
data make deconvolution of raw data therefore hardly tractable. 

To circumvent this problem, methods of iterative forward convolution have been 
devised, that a priori assume a specific functional form for the decay law. Nonlinear 
least-squares iterative reconvolution based upon the Levenberg-Marquardt algo- 
rithm [20] is a wide-spread analysis technique and, in comparision to transform 
techniques, quite satisfactory for distorted data, at least for simple exponential 
decays [41]. Multiexponential trial functions that represent the &pulse solutions to 
linear kinetic interconversion processes of fluorescent states have been widely used 
in the past, with the implicit assumption that the best-fit decay parameters are 
directly related to some specific kinetic quantities of the underlying physical scheme. 
Typical examples are the biexponential Birks solutions to a reversible 
donor-excimer pair [63 which have been applied to the analysis of diffusion in 
statistically averaged, low-molecular two-component systems [7] and to the 
description of conformal dynamics in bichromophoric compounds [13]. In addi- 
tion, triple-exponential forms as exact solutions to coupled three-state models have 
been used in fluorescence reconvolution analysis with the objective to correlate the 
optimized (ratios of) amplitudes (eigenvectors) and apparent lifetimes (eigenvalues) 
to the elementary processes of the hypothesized scheme [ 10, 321. 

However, for molecular systems of ever increasing complexity (amorphous solid 
state of organic glasses, concentrated dye-solutions, synthetic and biological 
polymers, micelles, molecules adsorbed on surfaces, etc.), the inhomogeneity of 
fluorescent chromophores must seriously compromise any analysis in terms of 
discrete sums-of-exponentials, no matter what the quality of the data and the 
time-scale over which the data can be collected. In this situation, the number of 
exponentials extracted by free-fit reconvolution of the data profile must be inter- 
preted to be the result of a pure curve parametrization, and thus, to be exclusively 
a sum-of-exponentials falsification of a typically distributed fluorescence pattern 
[29]. Distribution of event times and, thus, nonexponentiality in fluorescence 
profiles of such systems generally arises from the vast configurational and confor- 
mational multiplicity of molecular arrangements which shows up in a pronounced 
static or dynamical fluctuation with respect to the spatial, energetic, and temporal 
coordinates of the fluorophores. As a result, the ensemble and configurational 
average of chromophore fluorescence probes a large number of relaxing excited- 
state chromophores, which in case of a continuous distribution of individual 
exponential decays 

f(t) = lo2 @(z)e-‘” dz (1.2) 

represents the quasi-Laplace transform (cf. (2.29))(2.30)) of the underlying lifetime 
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distribution function Q, in this formalism. A discretization of the integral (1.2) leads 
to the Ansatz (2.2) forf: Note that although this leads to a sum of exponentials, 
the motivation is different from assuming a priori that f is a discrete sum of 
exponentials. Clearly, the dispersion of event times in the fluorescence of a many- 
body system imposes an additional difficulty in data analysis. By combining (1.1) 
and (1.2), we obtain 

(1.3) 

with the spectrum of event-times @ expressed by the inverse quasi-Laplace trans- 
form of the fluorescence signal deconvolved by the lamp function. Since both 
deconvolution and inverting the Laplace transform are ill-posed problems and, 
furthermore, the fluorescence response and the pulse shape are incomplete represen- 
tations for experimental data, the reconstruction of the distribution profile is de 
facto impossible. Naturally, a reconvolution technique which hypothesizes a definite 
distribution in iterative lit-and-compare cycles should yield a better prognosis. 
However, the drawback of this method is twofold. First, there exists, for the time 
being, no certainty for the actual distribution of physical event times in realistic 
chromophore morphologies, and second, even for distribution functions which 
might be assumed to be reasonable models, closed form solutions to (1.2) can be 
scarcely found over typical fluorescence time scales. Thus, the use of nonexponential 
trial functions in nonlinear least-squares reconvolution is of only little importance 
for the optimization of the input distribution parameters, at least for decay func- 
tions f based upon the formulation in (1.2). Nevertheless, nonexponential solutions 
as obtained from the treatment of microscopic transport master equations in ran- 
dom systems have been used in fluorenscence analysis more recently [ 1, 25, 42, 431, 
even though the procedure of such tedious data fit has not been reported in detail. 
In addition, stretched exponentials of the Kohlrausch-Williams-Watts functional 
form [531-a paradigm of fractal-like fluorescence [34, 37, 44]-have been 
examined as test functions in reconvolution [ 181; however, evaluation of the 
distribution via this rather unspecific function is as yet not feasible, since its 
microscopic origin is still elusive [35, 361. 

Very recently, methods that avoid specific nonexponential fitting functions, but 
rather deconvolute the fluorescence data by an unbiased algorithm have turned out 
to be very promising. Both the exponential series method (ESM) developed by 
James and Ware [30] and the maximum entropy mehtod (MEM) [47] modified 
to fluorescence analysis by Livesey and Brochon [38] have yielded quite satisfac- 
tory results in the reconstruction of distributions [31, 46, 50, 511. In the ESM, (1.2) 
is approximated by a series of exponentials with fixed lifetimes zk (usually equally 
spaced over the time scale of fluorescence), which allows the corresponding 
amplitudes to be evaluated from (1.3) by a linear least-squares iterative reconvolu- 
tion. In order to circumvent partly negative amplitudes in the free-parameter 
optimization, James and Ware [30] restricted these amplitudes to positive values, 
thus the analysis is restricted to pure decays only. Furthermore, to improve the 
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convergence and to speed up the search procedure, they modified the program to 
automatically remove terms from the exponential series when the preexponentials 
become less than an arbitrarily chosen cutoff [30]. This approach might distort the 
result if the algorithm at an intermediate step produces a small value of an 
amplitude whose “true” value is not close to 0. The more recent MEM is a 
regularization technique where the Shannon-Jaynes entropy [45] is maximized 
subject to the additional constraint that x2 = 1 (cf. (2.10)) [38]. Since MEM is a 
regularization method, it tends to be less sensitive to noise than ESM and can 
therefore work with a larger number of exponentials; moreover, there is no need 
with MEM to apply a cutoff for deleting pre-exponential terms of values close to 
zero during the reconvolution [38]. 

The motivation of this paper is based upon our recent studies on excitation 
energy transport and rotational sampling in the field of polymer physical chemistry 
[33, 393. The work to be presented here is concerned with our recent efforts to 
develop improved numerical data analysis methods, with the future objective being 
to determine hopping and rotational frequency distributions in static and dynami- 
cal polymer morphologies from a set of experimental fluorescence curves. 

In this work, a modified ESM algorithm is presented in Section 2. We use a com- 
bination of a quasi-Newton method and the Levenberg-Marquardt method in such 
a way that the algorithm becomes “as stable as possible”; also negative values for 
the amplitudes are possible. In Section 3 we show that the algorithm works well on 
both synthetic and real data. However, the inherent instability of the problem to be 
solved cannot be overcome by any algorithm that does not use regularization. This 
is shown by synthetic numerical examples in Section 3. In Section 4, we propose an 
algorithm based on Tikhonov regularization. While ESM and our algorithm in 
Section 2 should be seen as “reconvolution algorithms,” Tikhonov regularization as 
used in Section 4 can be considered as a “deconvolution algorithm.” The numerical 
examples in Section 5 show clearly that this algorithm improves the reconstruction 
from noisy data considerably. 

2. THE QUASI-NEWTON APPROACH 

As explained in Section 1, we are concerned with solving the first-kind convolu- 
tion integral equation 

h(t)=[&f.(t-r)dq (2.1) 
0 

where h and I are known up to measurement errors and f is the “decay function” 
to be computed. Motivated by the fact that f is actually a Laplace transform (cf. 
(1.2)), we approximate f by functions of the type 

T(l) := ,C, 2, .e--“” (2.2) 
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with a given number n of degrees of freedom and given lifetimes r,. We want to 
determine the amplitudes Lij from (2.1) where we assume a priori that the cl, lie in 
a given interval 

4 E cMO, + aoc, iE { 1, . . . . n}, (2.3 1 

with a, < 0 given. In order to avoid ending up with a constrained optimization 
problem, we make the substitution 

iii=:a,+q, iE (1, . ..) n}; (2.4) 

the new unknowns L?, may vary in all of R. 
To set up the optimization problem from which the di are to be determined, we 

proceed as follows: 
The measurement process defines equally spaced channels 

t, = i ’ h, (2.5) 

where i typically runs form 1 to i,,, = 256 or i,,, = 512, where i,,, is the number 
of channels in an SPT-experiment, and h is typically between 0.2 and 0.8 ns. We use 
the midpoints between the ti as knots for a trapezoidal rule for approximating the 
integral in (2.1) at these knots, which gives 

s 1, - h/2 

0 

+((ljil-~)l(l,-t,)], j~(L...,j,,,). (2.6) 

However, I is not known at specific points; only the averages 

fi := f7’ l(t) dz + yI;, iE { 1, . . . . i,,,} (2.7) 

can be measured (with an error vi). Thus, we use the formula 

w):=;;~’ [(f(r,-t,)+I^,+,f(t;-t,)], iE { 1, . . . . i,,,>. (2.8) 
,=I 

Using (2.8), the approximation (2.2), and the fact that also h cannot be measured 
at specific points but only in the form of mean values 

h^, := 
I 

” h(z) dz + 6;, ifz { 1, . . . . i,,,}, 
I,- I 

with errors 6,, one could try to determine the unknowns d, by requiring that 

Itri, f) = Ai, jg { 1, . . . . jmaxf, (2.9) 
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where 7 has the form (2.2). Note that (2.9) is just a system of linear equations for 
the original unknowns di, . . . . ii,. Moreover, the constraints (2.3) would have to be 
taken into account. Because of the fact that the number i,,, of channels is typically 
larger than the number n of degrees of freedom and because of the statistical nature 
of the measurement errors vi, hi, we have to replace (2.9) by a least-squares 
criterion; we formulate the following unconstrained minimization problem: 

Problem 2.1. Determine d, , . . . . 15, E R such that 

x* := i wi(z(ti, ,f) -Ii,)* --+ min, (2.10) 
i = i, 

whereyhas the form (2.2) and the unknowns &i, . . . . 6, are given by (2.4); see (2.11) 
and the following discussion for the remaining quantities. 

The weights are given by 

w; := l//$; (2.11) 

for a statistical motivation see [23]; since this statistical motivation is relevant only 
for large Li and since fij tends to be small for very small and very large indices i, 
we sum between two fixed indices i, and i, in (2.10) which are chosen such that hi 
is not too small for i, < i< i,. 

Note that so far, the only difference between Problem 2.1 and the usual approach 
in the literature is the transformation (2.4); e.g., in [29-311, (2.9) is minimized by 
a Marquardt-type method (cf. [20]) with respect to the original 5; 30. The 
constraints are taken into account in such a way that as soon as the algorithm 
produces a sufficiently small fii, this 5; is put = 0, once and forever. This is a quite 
heuristic approach for dealing with constraints, which could be improved con- 
siderably, e.g., by using an active index-set strategy (cf. [21]). However, since the 
transformation (2.4) removes the constraint anyway, we do not pursue this line. 
Instead, our approach is based on using a more sophisticated algorithm for the 
unconstrained optimization of Problem 2.1, which we describe below. 

From now on, let 

and 

a := (a,) . ..) a,) (2.12) 

Y;(E) := JTj. (A; - Z(t,, jp), 
(2.13) 

Then the objective function in (2.10) is just IIr(cI)Il*; by ( , ) and I( 11, we denote 
the usual Euclidean inner product and norm, respectively. Thus, Problem 2.1 now 
reads 

Ilda)ll* + mh (2.14) 
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which is a “nonlinear least-squares problem.” Most methods for solving (2.14) are 
based on the quadratic approximation 

Ilr(cc)ll’ z llr(dk’)112 + (g(@?‘), a - dkl) 

+ f (B,(cc - dk’), (x - dk’) (2.15) 

of the objection function in the current iteration point LX(“). Here, g(Cc@‘) is the 
gradient of Ilr(~~(~‘)ll 2, i.e., 

g(dk’) = 2F,r(cr’k’) (2.16) 

with the matrix Fk given by 

(2.17) 

The concrete methods differ by the choice of B,, which is thought of as some 
approximation of the Hessian of ily(~l@‘)ll 2; see below. 

From (2.15), the search direction for the next iterate is obtained by minimizing 
the right-hand side of (2.15); the first-order necessary condition for this minimum 
leads to the linear system 

BkY (k) = - g@p’) 

for the search direction yCk’. The next iterate is the defined by 

,$k + 1) := @’ + iky’k’, 

(2.18) 

(2.19) 

where & is determined by a line search (see below). Note that this approach makes 
sense only as long as B, is positive definite, since only then (2.18) is actually 
sufficient for a minimum in the right-hand side of (2.15), so that yCk’ is a descent 
direction (see, e.g., [20]). 

The following choices for B, are used: 

1. Method of steepest descent. Bk = I (although (2.15) is not a good motiva- 
tion here). 

2. Newton’s method. Here, 

B, := H(dk’), (2.20) 

where II(cc) is the Hessian of IIr(c1)l12, i.e., H(E), := (c?~/c%x, &x,)(II~(cI)(I’). See (2.32) 
for an explicit representation. 

3. Gaul&Newton method. Here 

B, :=2FkF;, (2.21) 

where Fk is given by (2.17). 
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4. Levenberg-Marquardt method. With appropriately chosen parameters yk, 
which especially guarantee that yCk’ is a descent direction, Bk iS replaced by Bk + YkI 
in (2.18). 

5. Quasi-Newton method. Here, Bck + ‘) is calculated from Bk by “update- 
formulas” in such a way that the “quasi-Newton condition” 

g (k+l)-gk=B(k+l) (k+l)- 
[E LX”] (2.22) 

is fulfilled. The motivation for (2.22) is as follows: If Bk is close to the Hessian 
H(ak), then a Taylor expansion shows that (2.22) holds approximately with Bck) 
instead of Bck+‘); however, since txCk+‘) and g (k + ‘) depend on B (k), this condition 
would not be manageable, so that one replaces Bck’ by Bck+ ‘), which yields (2.22). 
In concrete quasi-Newton methods, the update formulas are such that (2.22) is 
fulfilled by updating Bck) by a matrix of rank 1 or 2. In this way, the fast con- 
vergence of Newton’s method is nearly retained with (in general) much less numeri- 
cal effort. We use the “Broyden-Fletcher-Goldfarb-Shanno” update formula, which 
is the following rank-2 update: 

B(k+ 1’ := B’k’ + 
1 

BFGS 
( iYk', fk') 

. @(k) 

1 (k) (k’ (k’ 
-@k’, B’k’6(*1)‘* * B ’ (2.23) 

where 

qvk’ := g(cr (k+ I’) _ &(k’) 

6(k) :=C((k+I)-a(k’ 
3 

and where the matrices GCk) and tick) are the following dyadic products: 

@ff’ := fp . p, 

I+$’ := cy 6jk’. 

(2.24) 

(2.25) 

We refer to (2.23)-(2.25) as “BFGS-method” below. For other update formulas see 
[ZO, pp. 38ff]. 

After these general discussions concerning the choice of the search direction, a 
few words concerning the line search are in order, which is used to determine 1-k in 
(2.19). Usually, the choice of a specific line search algorithm is crucial for the cost 
and performance of the whole algorithm. There is always a trade-off between cost 
and accuracy of a line search: “Exact line search,” where 1, is taken as the mini- 
mizer of the function 2 + Ilr(crCk’ + ;lyCk’)jl *, is of course costly. See [20] for various 
“inexact line search strategies.” The strategy we use is (S2) from [4] (with initial 
steplength given by (42) there). 
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Now we turn to describing our complete algorithm. First, we tried the “hybrid 
approach” described in [22] as “Method HY2”; this method is a combination of 
the Gaul&Newton and the BFGS-methods, where the latter is used if there was no 
sufficient relative reduction of the objective functional in the preceding step. For a 
problem (2.14), where the minimal value of the objective functional is non-zero (as 
in our problem), this method tends to yield BFGS-steps towards the end. 

This method did not work well for our problem: The matrices B’“’ appearing in 
the GauB-Newton steps were very ill-conditioned, which resulted in “bad” search 
directions every time the algorithm chose Cat&Newton steps. A heuristic reason 
for the ill-conditioning of F,FL (cf. (2.21)) is the following: 

Substituting (2.2), (2.4), and (2.8) into (2.13) gives 

r,JcL)=& (2.26) 

with suitable coefficients cki. Hence, 

Hence, for any vector (/II, . . . . /Jn)‘, 

(2.27) 

(2.28) 

If 9 denotes the Laplace transform of a function p, then it follows from a simple 
change of variables that 

I” dr = Y@)(t) (2.29) 

with 

Rs,:=s-y?(f). (2.30) 

Hence, a comparison of the bracketed term in (2.28) with (2.29) shows that the 
matrix FL acts like a discrete version of a Laplace transform (followed by a con- 
volution with the function -I). Since inverting the Laplace transform is a severely 
ill-posed problem (cf. Section 4), it is to be expected from the outset that Fk is very 
ill-conditioned, which actually showed in our computations. 

The main idea is now to replace Gaul%Newton steps by Newton steps in the 
hybrid method HY2 of [22]. In general, Newton steps are very expensive to com- 
pute. Here, however, the Hessian is very easy to compute: 
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It follows from (2.26) that for I# i, (82r,/8a, da;)(a) = 0 and that 

11 

(2.31) 

Hence, the Hessian H(ack)) of Ilr(ack))lI * is obtained by differentiating (2.16)-(2.17 
using (2.31). This results in 

H( a@)) = 2F, FL + Dk (2.32 

with 

D, = diag [F/c 4@?1, 
6” 1. 

(2.33) 

Since F,FL is positive semi-definite, H(ack’) will be positive definite as soon as all 
diagonal elements di of D, are positive; the smallest eigenvalue is at least min, di. 

Since, as mentioned above, Fk can be interpreted as a discretization (via the 
trapezoidal rule, which has only positive weights) of a Laplace transform followed 
by a (discretized) convolution with -1, we obtain 

PROPOSITION 2.2. Zf for all je {i,, . . . . i,}, ri(ack)) < 0, then all diagonal elements 
of Dk are positive. 

To see this, note that 1 is positive and that the djk’ in (2.33) cancel against those 
in (2.27). 

We conclude the following from Proposition 2.2: 

1. If all ri(ack)) are negative, i.e., if the actual parameter vector ack) 
“overestimates” the hi, then Z-Z(ack)) is positive definite and will likely be well- 
conditioned. 

2. If most of the r,(a@‘) are negative, then it is still quite likely that (ack)) is 
well-conditioned. 

3. If most r,(ack’) are positive, i.e., if the current parameters underestimate 
most of the R,, then H(ack’) will most likely not be positive definite, so that a 
Newton step will not yield a descent direction. 

Note that without the substitution (2.4), the corresponding least-squares problem 
is a quadratic minimization problem. However, its Hessian is ill-conditioned, as can 
be seen with the same arguments as those used above for showing that Fk is ill-con- 
ditioned. Thus, the transformation (2.4) does not only remove the constraint (2.3), 
but also has a tendency to make Newton steps more stable at least as long as most 
of the residuals are negative. These conditions lead to our algorithm: 
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ALGORITHM 2.3. 1. For an initial guess c(“), let 

B, := H(dO’) 

be defined by (2.32). If B, is not positive definite, replace it by 

B, + vl 

with v > 0 such that B, + vZ is positive definite. Let k := 0 and go to 2. 
2. Solve (2.18) for ytk’ and define c((~ + ‘) by (2.19) with & determined by the 

strategy (S2) described in [4] (with initial steplength given by (42) there). With a 
given E E 10, 1 [ (we used E = 0.2), check if 

Ip(Lx(k))l~2- l(r(dk+‘))l12<&. llr(dk))/12 (2.34) 

holds. If yes, go to 3. 
Otherwise, compute H(#+ “) as in (2.32). If H(ackf ‘I) is positive definite, then 

go to 2 with Bck+ ‘) := H(@+ ‘) ) and k replaced by k + 1. Otherwise, go to 3. 
3. Compute Bck+ ‘) via (2.23) and go to 2 with k replaced by k + 1. 

This algorithm is performed until (2.34) holds for a=O.Of five times in a row. 
This stopping criterion, which says that five iterations in a row yields less than 1% 
improvement in the function each, was developed experimentally. 

This algorithm was tested on many synthetic and some real data and performed 
very well (also for negative z0 in (2.3)). The number of iterations typically needed 
for 12 = 20 up to n = 70” of freedom, i,,, = 256 or 512, was between 10 and 20. The 
final value for x2/(& - i, + 1) (with x2 defined by (2.10)) was always between 0.9 
and 1.2. We support these claims by reporting about one of these tests in the next 
section. 

3. NUMERICAL EXAMPLES I 

In the following examples, predetermined amplitude distributions were inserted 
into (1.2) (in the discrete form (2.2) with n = 1000). The resulting functions were 
convolved with the lamp function 1 shown by broken lines in Fig. 3.1.1. Then, 
Gaussian noise (with variance equalling the function value) was added. The 
resulting values were taken as data hi and are shown as dots in Fig. 3.1.1 for 
Example 3.1. The solid line in this figure shows the resulting reconvolution I( ti, f), 
where 7 is determined via (2.2) and (2.4) from the parameters c( = (@, , . . . . @,) 
generated by Algorithm 2.3. This figure also shows the scaled residuals r(a) (see 
(2.13)) and their autocorrelation. (Because of space considerations, the corre- 
sponding figures for the other examples are not shown here, but are available in a 
preprint version of this paper from the authors.) The piecewise linear interpolation 
of the resulting values for the “amplitudes” (a,, . . . . cl,) is shown in Figs. 3.1.2, 3.2, 
3.3, 3.4, and 3.5. 
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AUTOCORRELATION OF RESIOUALS 
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EXAMPLE 3.1. The predetermined amplitude distribution was Gaussian with the 
maximum at r = 10. We took n = 30, i, = 7, i,=256, and obtained x2/250= 1.02 
after 12 iterations of Algorithm 2.3. The results are shown in Figs. 3.1.1 (in 
logarithmic scale) and 3.1.2. The reconstruction is quite satisfactory. Note that our 
algorithm is designed to reconstruct f and, not directly, the underlying amplitude 
distribution. Since the link between those two is a Laplace transform whose inver- 
sion is ill-posed, we think that the reconstruction in this example is pretty good. 

We now show by an example that in Algorithm 2.3, it was essential to combine 
Newton steps and quasi-Newton steps. Figure 3.1.3 shows the reconstructed 
amplitude distribution from the data of Example 3.1 if only Newton steps are used. 
Compared to Fig. 3.1.2, the result is much worse. The reason for this seems to be 
that while Algorithm 2.3 forces B (k) to stay positive definite all the time, this is not 
the case if only Newton steps are used (cf. the discussion following Proposition 2.2). 

The following examples serve the purpose to show the limitations of the 
approach of Section 2 and to motivate the development to be outlined in Section 4. 
They are generated in the same way as Example 3.1. As predetermined amplitude 
distribution, the function cc(t) = C . t -“* e~ui’z was chosen (cf. [ 111). We made a 
lot of comparative computations which differ from each other by noise level, the 
number of degrees of freedom, and the location of the T, (cf. (2.2)). We report about 
some of the results in Table I. These examples show the following effects: c( can be 
reconstructed well with moderate noise if the points ‘si are concentrated in the part 
of the r-axis where the function CI actually varies (Example 3.2). With the same n, 
the reconstruction is much worse even for low noise if the t, vary in a larger inter- 
val. Examples 3.4 and 3.5 show that in the presence of noise, increasing the number 
of degrees of freedom makes the reconstruction worse. 

The reason for this strange behavior, which we observed also in other examples, 
lies in the ill-posedness of our problem. This will be explained in the next section. 

4. ILL-P• SEDNESS AND REGULARIZATION 

Recall Hadamard’s definition of a well-posed problem: A problem is called “well- 
posed,” if for all admissiable data, a solution exists and the solution is unique and 

TABLE I 

Reconstructed amplitudes 
Example Noise n 5, E .‘. contained in Fig. 

3.2 Moderate 60 [0.5, 301 3.2 
3.3 Low 60 [OS, 603 3.3 
3.4 High 60 [OS, 601 3.4 
3.5 High 30 [ 1.5, 603 3.5 
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depends continuously on the data (in a topology which makes sense for the con- 
crete problem). If any of these requirements is violated, then the problem is called 
“ill-posed.” Ill-posed problems, especially those, where the solution depends discon- 
tinuously on the data, pose serious numerical problems: “Naive” algorithms not 
taking the ill-posedness into account will be numerically unstable; i.e., even small 
data errors will have catastrophic effects. For a general survey about various 
aspects of ill-posed problems and methods for their numerical treatment see [S, 17, 
24, 26, 491. As can be seen, e.g., from 1241, integral equations of the first kind are 
“nearly always” (in a precise sense) ill-posed. Note that both (2.1) and (1.2) are 
integral equations of the first kind (of convolution type). 

One of the most severly ill-posed problems is the problem of inverting the 
Laplace transform. Thus, the closely related integral equation (1.2) is severely ill- 
posed: Even small noise in f may lead to large perturbations in a. Now in our 
problem, also f is related to the actually measured function h via (2.1), which is 
again an ill-posed problem. It can be concluded form [27] that if h and 1 are 
continuous and strictly increasing in a neighborhood of 0, then f is uniquely 
determined by (2.1). This equation can be written as an operator equation 

JCf’= h (4.1) 

on a suitable Hilbert, e.g., an L*, space, where 

(Kf)(Q :=l; l(t-s)f(s) ds 

is a (non-selfadjoint) compact operator with L2-adjoint 

(K*u)(a) = 1’ f(t - o) u(t) dt, 
0 

(4.2) 

(4.3) 

if I has its support in [O, T]. 
Under the conditions mentioned above that guarantee the unique solvability of 

(2.1), the kernel (null-space) N(K)= {0}, so that 0 is not an eigenvalue of K. 
However, since 0 is always an element of the spectrum of this compact operator, 0 
is in its essential spectrum. Thus, R(K) is at most dense in L2 and K ~ ‘, defined on 
R(K), is everywhere discontinuous. This shows that (2.1) is really ill-posed as an 
equation between L*-spaces (and similarly, between all reasonable function spaces) 
in the sense that a solution does not always exist and that the solution, if it exists, 
depends discontinuously on the data h. 

When discretizing an ill-posed problem, the approximating system of linear equa- 
tions become more and more ill-conditioned as their dimensions increase (see, e.g., 
C14,151); “coarse discretization” regularizes a problem, while this regularization 
becomes weaker as the discretization becomes finer. Since the Ansatz (2.2) can be 
seen as a discretization, this explains the behaviour, see in Examples 3.4 and 3.5: 



TIME-RESOLVED FLUORESCENCE: ESM 19 

Increasing the number of degrees of freedom makes the approximating problem 
more ill-conditioned, so that the data error is propagated more seriously into the 
solution J Thus, using an even higher degree of freedom will not make the result 
better, but worse. 

Our approach can either be seen as solving (2.1) via the discretization (2.2) or, 
alternatively, as simultaneously solving (1.2) and (2.2) by first designing a very 
rough approximation (namely (2.2)) for the integral operator (1.2) and then com- 
bining this with a discretization for (2.2). We think that it is precisely the roughness 
of the approximation of the integral operator in (1.2) that enables our Algo- 
rithm 2.3 to produce reasonable results even for the amplitude distributions. If one 
tries to use a better approximation (instead of (2.2)) for the integral operator in 
(1.2), then the ill-posedness of (1.2) will be felt more strongly and the results will 
get worse if nothing is done to counteract this. 

Methods for dealing with ill-posed problems are called “regularization methods”; 
besides “regularization by discretization,” which is what we have done, the method 
of “Tikhonov regularization” is used. For (4.1), this method reads as follows: If 
instead of h, one has perturbated data h, with Ilh - hdli < 6, the “regularized solu- 
tion” x: is defined via 

//&7-k#+~ Il~fl12+min (4.4) 

or, equivalently, 

(K*K+pL*L)f = K*ha, (4.5) 

where p > 0 is the “regularization parameter” and L is a suitable linear operator; 
e.g., L = I or L is a differential operator like Lf =ftk’. The choice of p = ~(6) is 
crucial for convergence with 6 + 0, for stability and for convergence rates; it can 
be thought of as a trade-off between accuracy (p small) and stability (p large). 
See, e.g., [16 and the references quoted there] for the choice of p. In practical 
computations, (4.4) or (4.5) have to be combined with discretization. 

Note that under reasonable assumptions, the regularized solutions and their 
discretized versions converge to the “true solution” as the noise level and the 
regularization parameter tend to 0 in a synchronized way. Thus, the following 
regularized version of Algorithm 2.3, motivated by (4.4), can be expected to yield 
approximations to the decay function f and can therefore be considered as a 
“deconvolution” of (2.1). In contrast, Algorithm 2.3 should be seen as a “reconvolu- 
tion algorithm” in the sense that it produces approximations that make the 
functional in (2.10) small without guaranteeing that these approximations actually 
converge to the true decay function. 

ALGORITHM 4.1. Use Algorithm 2.3 (with the obvious changes) for minimizing 

llda)l12 + P IlD24’ (4.6 1 
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instead of Ilr(a)ll 2. Here, D2c( is the following difference quotient approximating the 
second derivative, 

where do=&+i := 0 and the ri were assumed to be equally spaced such that 
ri = r0 + iK. p > 0 is a fixed regularization parameter. 

The “obvious changes” in Algorithm 4.1 concern the concrete form of the 
gradient and the Hessian of (4.6), which can be computed easily from the corre- 
sponding quantities in Algorithm 2.3. 

Algorithm 4.1 can be thought of as a discrete version of (4.4). The additional 
term p )I D’all 2 penalizes oszillations in c(. In the next section, we report about some 
numerical examples obtained with Algorithm 4.1. 

5. NUMERICAL EXAMPLES II 

The following example is similar to Example 3.1: 

EXAMPLE 5.1. A predetermined Gaussian amplitude distribution with maximum 
at r = 14.5 was used as in Example 3.1 (with moderate noise) to generate data; 
however, while in Example 3.1, the data were generated via (2.2) with n = 1000, 
we used only n = 10 here, so that the data are not too good. Then we used 
Algorithm 4.1 (always with n = 30” of freedom) first with p=O (which is just 
Algorithm 2.3) and then with two non-zero values of the regularization parameter 
with the results shown in Table II. 

Even a closer look at the residuals did not reveal significant differences. It is 
obvious that regularization improves the reconstruction considerably. The 
regularization parameter, which is usually thought of as “small,” is up to lo4 here. 
However, this is only a question of scaling. 

TABLE 11 

Reconstructed amplitudes 

P contained in Fig. 

0 5.1.1 
1000 5.1.2 

10,000 5.1.3 
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FIGURE 5.1.1 

FIGURE 5.1.2 
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FIGUKE 5.1.3 

EXAMPLE 5.2. The data are the same as in Example 3.3, where the reconstruc- 
tion was quite bad. We used the same n( = 60) and ~~ as in Example 3.3 and 
obtained the results shown in Table III with Algorithm 4.1. 

A comparison of Figs. 5.2.1, 5.2.2, 5.2.3, and 3.3 (which corresponds to p = 0) 
shows the effect of regularization. For p = 105, the reconstruction looks as it should. 
For all these values of p, the residuals are roughly uniform. However, the value for 
x’/(i, - i, + 1) increases from 0.91 for p = 50 to 1.45 for p = lo’, which reflects the 
trade-off between accuracy and stability mentioned above. 

EXAMPLE 5.3. Here, we analyze the excimer fluorescence of poly-( l-vinyl) 
naphthalene [33]. Figure 5.3.1 shows the decay fluorescence pattern (convolved 

TABLE III 

Reconstructed amplitudes 

P contained in Fig. 

50 5.2.1 
loo 5.2.2 

100,000 5.2.3 



TIME-RESOLVED FLUORESCENCE: ESM 23 

FIGURE 5.2.1 
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Lifetimes / nanoseconds 

FIGURE 5.2.3 

with the lamp function; I,,,, = 480 mm, I-,,, = 313 nm) and the fit obtained with 
Algorithm 2.3; for the fit, we used n = 25 with exponentially distributed values for 
the zi, i, = 19, i, = 256, and obtained x2/238 = 1.10. The reconstructed amplitudes 
are shown (in logarithmic scale) in Fig. 53.2. Distributions of negative amplitudes 
are centered around 0.5 and 15 ns, respectively, resulting in the typical rise of 
excimer formation (see Fig. 5.3.1). While Algorithm 2.3 clearly reconstructs these 
negative amplitudes, it also generates an oscillation between 2 and 7 ns. With 
Algorithm 4.1 (with p = lo), these oscillations are damped as shown in Fig. 5.3.3 
(x2/238 = 1.14). These results do not allow us to distinguish between a distribution 
or a discrete set of lifetimes; for this, the experimental data (2 * lo4 counts in peak 
maximum) in our experiment are not good enough: More accurate transient data 
with CPM values above lo5 would be required to allow more definite decisions on 
the basis of statistical criteria. 

These results show that regularization is certainly a promising approach for our 
problem. However, more work has to be done, e.g., concerning an automatic choice 
of the regularization parameter as suggested in [16]. 

While Algorithm 4.1 is a modification of Algorithm 2.3 that incorporates 
Tikhonov regularization, we also constructed a similar modification for the maxi- 
mum entropy method (cf. [47]). The numerical results were comparable to those 
obtained with Algorithm 4.1. 
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